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Abstract--When folds of multiple episodes interact, complex interference patterns or refolds result. Simple 
patterns may be directly interpreted by the structural geologist, but more complex ones are often ambiguous and 
undecipherable. A technique to analyze many refolds is presented which does not directly require any field 
measurements of structural data. Instead it requires a series of parallel views through the refold, as can be 
obtained in mines or from a slabbed rock sample. Individual folds are identified on the level maps and hinge trends 
and plunges are calculated. Stereonet plots and cross-sections yield the fold orientations and shapes. Assumptions 
inherent to this technique are (1) the first folds were cylindrical and (2) the second folding motions were 
approximately those of similar (shear) type folds. 

The above technique was applied to a small-scale example from the Kootenay Arc, Washington. Analysis 
showed nearly coaxial folds of complex en 6chelon, non-cylindrical and non-similar type characterizing both 
generations. This example demonstrates that the technique is applicable to refolds that do not meet the idealized 
assumptions about folds. This technique should prove valuable to geologists working in other refold areas and is 
particularly applicable to mining problems for which the necessary three-dimensional data are available. 

INTRODUCTION 

WHEN AN area has undergone several stages of deforma- 
tion, complex three-dimensional refold shapes can result 
(Ramsay 1967, Thiessen & Means 1980). One of the 
main problems in refold classification is that the two- 
dimensional patterns that a geologist might see on an 
outcrop or map are not unique (Thiessen & Means 1980, 
Thiessen in press). In fact, a single two-dimensional flat 
view of a refold, such as an oval shape, can be quite 
ambiguous. What a structural geologist needs is a 
technique to analyze a refold and determine the 
waveform, amplitude and orientation for each folding 
episode, One technique has been developed by Carey 
(1962) and reviewed by Ragan (1973). This method is 
applicable only to Ramsay's (1967) type 3 (coaxial) 
refold structures in which the structure is just a complex 
two-dimensional pattern which is extended in the third 
dimension. We have developed a method that enables 
one to analyze type 1 and type 2 refolds (basin-and- 
dome, and crescent), which in the third dimension are 
much more complex. However, this method cannot be 
applied to type 3 refolds and it is complementary to 
Carev's technique. Neither technique can unravel type 0 
(trivial) refolds. These would not be readily distin- 
guished as refolds by the field geologist and so are not 
considered further. 

The technique we present involves locating fold hinges 
in three-dimensional space. In order to analyze a type 1 
or 2 refold, one therefore has to have good three-dimen- 
sional mapping control. This type of control can be 
obtained with a rock sample by cutting the sample into a 
series of parallel sections, preferably perpendicular to 
the main structural grain. If the rock sample was oriented 
when collected, the data obtained can be related to field 
studies. This sort of three-dimensional Control can also 

be obtained in a mine, where mining levels yield the 
necessary data on hinge locations. This technique has 
been successfully applied to both kinds of problems. In 
this paper, we analyze a single rock sample. In a compan- 
ion paper (Thiessen & Brown in prep.) we analyze 
complex folds in a mining zone in northwestern Man- 
itoba. 

The sample in question was collected from within the 
Washington part of the Kootenay Arc, which is distin- 
guished by multiple generations of folding, often nearly 
coaxial (Mills & Nordstrom 1973). Its field orientation is 
unknown. It is composed of alternating layers of marble 
and phyllite, and was cut into ten parallel serial levels for 
analysis. The different levels of the sample exhibit a 
remarkable variety of refold patterns including hooks, 
basins, domes, crescents and bird's heads (Fig. 1 ). Figure 
2 is an interpretation of the level of the refold shown in 
Fig. 1. The locations of first and second fold hinge points 
used in the analysis are indicated. Figure 2 also shows the 
quartz-feldspar boudins (cross pattern) that dominate 
the lower portion of the sample, Some of these boudins 
appear to control folds, while others are obviously 
involved in the folds. In a few locations the phy[lite and 
marble layers are also stretched and necked. This 
portion of the sample was too complex for analysis. 

TECHNIQUE OF ANALYSIS 

Hinge planes 

This technique must assume that the folds are all 
cylindrical and that the second folds are similar or shear 
folds. However, the analysis of our example demon- 
strates that the technique works very well on more 
complex fold systems, and in fact actually determines 
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the non-cylindrical and non-similar nature of folds of 
both generations. Consider the two episodes of folding 
shown in Fig. 3(a). Both are simple sinusoidal folds. The 
second folding motions produce similar folds by differ- 
ential simple shear (particles move along shear planes) 
and thus interact with the first folds. The movement of 
point A'  during the second folding motions will cause 
shear plane 1 to shift to the right, also moving point A 
and all points along the dashed line shown on the first 
folds. Similarly, movement of point B' will shift plane 2 
and point B to the left and movement of C' will shift the 
third shear plane and point C to the right. When this is 
accomplished, a three-dimensional refold (Fig. 3b) 
results. Note that points A, B, and C originally defined a 
straight line, which was one first-generation hinge. They 
still lie on the first fold hinge, but it is now curved. 
Similarly, points A", B" and C" also lie on one folded 
first-generation hinge. The initially straight first fold 
hinges are bent into a skewed projection of the second 
waveform. Each individual hinge is deformed within and 
defines a single plane. This plane will contain the original 
f] orientation and the second slip orientation (a2). The 
plane is herein named the first hinge plane. Any cross- 
section parallel to the first hinge plane (Fig. 3c) would 
show an oblique view of the second waveform. This is 
because, for cylindrical folds, the first folds (Fig. 3a) can 
be thought of as a series of straight lines drawn parallel 
to the original f~ orientation. Each of these lines will be 
folded into a shape mimicking the second fold form, and 
each will also be contained in one single plane parallel to 
the first hinge plane. Any section prepared parallel to 
this orientation will therefore yield data on the second 
fold form. The orientation of the first hinge plane is 
obtained in the following way. 

The technique used is quite similar to Ramsay's (1967) 
treatment of a lineation being folded by a similar fold. 
By plotting the trend and plunge of each small first hinge 
segment on a stereonet,  one can obtain the girdle of 
points which would represent the desired plane. This can 
be done in two ways. The first is simply to measure the 
trend and plunge of each hinge segment observed. The 
second technique, used here, is to examine a series of 
parallel levels, such as cut slabs of a rock sample or 
mining levels. One can select a single first fold hinge that 
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Fig. 2. Interpretat ion of Fig. 1. The  marked hinge points ~ere  used 
in the analysis. Most  are on marble/phylli te contacts,  hut several are 
on a single phyllitic band within a marble layer. The  cross pat tern 

indicates quar tz - fe ldspar  b o u d i n s  

appears on two different levels, and from trigonometric 
relations, determine the trend and plunge. Notice that 
this will give the trend and plunge of the straight line 
between the two hinge points, which is an approximation 
of the hinge itself. However, this approximation actually 
gives the desired result. Since a single first-generation 
hinge will be folded into a plane, the straight line be- 
tween any two points will also lie within the plane. 
Plotting a series of these lines on a stereonet should give 
the first hinge plane orientation. 

This plotting technique is not limited to fold hinges 
observed on adjacent levels. A line drawn from a hinge 
location on the first level to the same hinge on the fifth 
level will also lie in the first hinge plane. A more 
important example is if a hinge appears twice on one 
level, such as at the two tip points of a single crescent 
shape. The line between these points will also lie in the 
first hinge plane. The trend of this line would theoreti- 
cally be the strike of the first hinge plane, as long as the 
viewing level is a horizontal plane. By using hinge 
locations on widely separated levels or on the same 

SECONO ,"-, 0 
FOLDING . 'J~' 
MOTIONS I~.C' 

A , i ) r ' - -  t 

b C 
fl-a~ PLAN[ 

Fig. 3. (a) First lolds, shown on the right are ~,ft'ectcd by simple ",hear el the scc~md fold ing motions. Shear planc~ I. 2, 
tlrid 3 cont:.lhl points A ' .  B' and C' which movc us ~hown in the upper Iclt. The dashed line on the iirst fold form i,, the 
trace of  shear plane 1. (b) The three-dimensional  refo ld structure created by the relat ionships i l lustrated in (a). Points 
A.  B and C correspond to points A .  B and C in (a). Simi lar points shown on the left hand f i rst-generat ion anticl ine are 
label led ~ i th  double primes. (c) The / i - a :  ph.inc, def ining the first hinge t~lullc. It contains the -qnusoidat ~avc fo rm that 

thc first fold axis has been bent into b~ the second fold ing motions. 
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Fig. 1. Photograph of one level of the analyzed sample, measuring approximately 20 x 30 cm. Notice the refold patterns 
in the upper portion of the sample and the complexities associated with the quartz-leldspar boudins in the lower portion. 
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FIRST HINGES 

o b 

Fig. 4. Lower hemisphere contoured stereonet plots of the first hinge data. (a) Hinge segments between adjacent levels 
only. defined as single segments (SS). (b) All possible hinge lines. Notice the well defined orientation of the first hinge 

plane in both cases. 

level, one can add considerably more data points to the 
stereonet plot. As in any structural problem, more data 
on the net allow for a more accurate determination of the 
girdle. 

Figure 4(a) shows the orientations of the first hinge 
segments from the sample, calculated from adjacent 
levels (designated SS for single segments) while Fig. 4(b) 
shows orientations of lines between all levels. As can be 
seen, both describe a nearly vertical first hinge plane 
striking NE. 

The next stage of the problem is to obtain the first fold 
waveform. Each of the shear planes of the second folding 
episode cuts through and preserves a slice of the first 
folds (Fig. 3a). Any section parallel to this plane will 
therefore show some projection of the first fold 
waveform. For example, the sectional slice of shear 

plane 1 is shown as a dashed line in Fig. 3(b), and extends 
through points A and A". In similar folds of this sort, the 
shear planes are parallel to the axial planes. This orienta- 
tion is obvious if the rocks have well developed axial 
planar cleavage. Carey (1962) states that the axial plane 
defines and contains all the fold hinges, so the hinge 
segment technique described above can also be used. 
However, only second generation hinges should be plot- 
ted on the stereonet. The resulting girdle will define a 
second hinge plane which should be the second axial 
plane. Sections prepared parallel to this should show an 
oblique section of the first fold waveform. 

Figure 5 shows the second hinges. As can be seen, the 
single segment plot does not define a girdle. One has to 
add segments between widely separated levels and cor- 
relate f~ hinges across f~ folds in order to reveal the 
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b 
Fig. 5. Sectmd hinge orientat ion data,  presented  in the same manne r  as Fi~. 4. Notice that the plot ol single segment  (SS) 
data points.  (a) obtained from adjacent  levels does not define a second h~ingc plane orientat ion.  ~ 'hercas the plot of all 

hinge lines (b)  does. 
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Fig. 6. Locations of five sections parallel to the second hinge plane. The sections dip 85 ° NE. When these sections.are 
prepared, they show skewed views of the first fold waveform. 

second hinge plane. This plane is again nearly vertical 
and trends west of north. Also notice that the main 
clusters of fl and f2 hinges are almost coaxial. This 
relationship was substantiated by local field mapping 
and is a typical pattern observed in rocks of the Kootenay 
Arc. However ,  the sample was acquired as a loose 
block, so the directions shown in Figs. 4 and 5 do not 
reflect true orientations. 

The advantage of using the hinge segment technique is 
that one does not have to have any structural measure- 
ments in the study area. Maps or photographs of the rock 
slabs or mining levels are all that are required. This is 
particularly valuable in analysis of mine workings, where 
structural data are hard to obtain due to the planar 
nature of the blasted surfaces. However ,  if structural 
data can be obtained,  it would enhance the analysis and 
its predictive value. 

Fold waveforms 

Following the technique outlined above,  deriving the 
waveforms is simple. Calculate trends and plunges of all 
possible fold hinges. Plot the first-generation hinges to 
determine the first hinge plane orientation. Sections 
parallel to it will show the second folds. Similarly, 
sections parallel to the second hinge plane will show the 
first folds. With multiple levels available it is easy to 
locate and generate a series of parallel sections. The first 
and second waveforms arrived at by this technique will 
not usually be the true profile view of the waveform. In 
general,  the sections will not be perpendicular to the fold 
axes, and so the sections would be skewed. This can 

easily be corrected for by simple geometric considera- 
tions, 

Figure 6 shows the locations of a series of sections 
parallel to the second hinge plane. The cross-sections 
themselves are schematically summarized in Fig. 7. 
These show a highly skewed view of the first-generation 
folds, for which individual hinges are numbered.  Notice 
the complex nature of the folds. Hinge 25 is the dominant 
hinge for the first three sections, then totally disappears 
halfway through the refold. Only one hinge, number 20, 
can be traced clear across the sample. Figure 8 is a 
cartoon version of what the first folds look like in three 
dimensions. The complex en echelon nature of the folds 
is obvious. In fact, there appears to be a zone in the rock 
where all synforms become antiforms along the fold 
trend and vice versa. 

Figure 9 shows the locations of five sections parallel to 
the first hinge planes. Schematic summaries of the cross- 
sections (Fig. 10) show the second-generation folds, 
which again exhibit complex en echelon, non-cylindrical 
and non-similar arrangements of individual hinge lines. 
Figure 11 is a three-dimensional cartoon of these folds. 

Once the various folds are identified, their axial planes 
can be superimposed onto a map of one of the levels 
(Fig. 12). 

Kinematic shear axes 

The refold analysis technique described above yields 
even more specific information about some of the 
kinematic axes describing the folds (Ramsay 1967. 
Thiessen & Means 1980). As stated previously, the first 
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Fig. 7. Schematic versions of the sections located on Fig. 6. Individual first-generation hinges and waveforms arc shown 
and designated with numbers .  Notice the complex en echelon character  of the folds• Only one hinge (20) extends clear 

through the refold, i~z designates  the trace of the first fold axial plane on these sections. 

hinge plane contains a2 andf t .  The second hinge plane is 
also the second axial plane, and so contains b: and a 2, 
which are mutually perpendicular. The intersection of 
the first and second hinge planes on a stereonet (Fig. 13) 
will then give the second slip direction (a2). The folding 
motion axis (b:) will be within the second hinge plane 
and perpendicular to a~. The pole to the axial plane (c:) 
will also be the pole to the second hinge plane. Thus, the 
axes that completely define the orientation of the second 
folding motions are rapidly determined. This technique 
is analogous to Ramsay's  (1960, 1967) technique of 
determining the a~ direction by examining first fold 
hinge lineations as they are folded across a second fold. 
This is different from most other structural techniques, 
because in other problems, one is usually dealing with 

. , , 4 0  14 
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Fig. ~. Three-dimensional  cartoon showing a single wall-like laver 
that has been folded b x the first generat ion folds shown in F ig  7. The  
diagram is dra~,vn with lighting coming from the right side. so that 

hinge', 13. I~. ~,. 25 and 25 arc all antiforms. 

just the second generation fold hinges, which are the 
intersections of the second axial planes with whatever 
surface is present. In other words, most structural 
analysis determines only the orientations of the folds 
produced by the folding motions. Our technique deter- 
mines the relative motions themselves, allowing for a 
much more complete analysis of the refold. However, 
the motions that are determined are constrained by the 
simple-shear model. 

The original orientations of the first fold axes are more 
difficult to determine. The average post-fz folding direc- 
tion off~ is often fairly obvious from the clustering of first 
hinge measurements (Fig. 4). The second folds would 
cause the data points to scatter from a single cluster, and 
if the second folds were ideal chevron folds, two clusters 
would result+ neither representing the original orienta- 
tion off~. The orientation of the first axial plane can be 
readily measured in the field using axial planar cleavage 
or observations in hinge zones, but the axial plane would 
have subsequently been folded. Also+ in many cases 
direct measurement of the axial plane might be difficult. 
For these reasons, a technique based on the data already 
available will be presented. Ramsay (1967) described 
several techniques for determining the original orienta- 
tion of ft.  The most obvious is simply to measure the first 
fold hinges in an area that has not undergone significant 
second-stage deformation. He also showed that, for 
shear folds, if there are several separate domains of 
differently oriented second folding motions (i.e. several 
directions of az), then several distinct first hinge planes 
will result. These will cross at the original orientation of 
f~. Figure 14 shows the first hinge planes for each indi- 
vidual first generation hinge actually observed in the 
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Fig. 9: Locations of five sections parallel to the first hinge plane. The sections dip 84 ° SE 

sample. As can be seen, an original orientation forf l  is 
indicated at the intersection of these planes. Because a2 
is given by the intersection of the first and second hinge 
planes, a small range in orientation of a,_ is indicated. 
This is possibly due to non-passive behaviour of bedding 
or the presence of the quartz-feldspar boudins. 

SECOND I ~ GENERATION FOLDS A 

i, " I 
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Fig. I() Skcwcd views ol the second foM wavcforms as sccn 
schematically in the sections located on Fig. U. Individual second- 

generation folds are noted with letters. 

One could take a different view of the entire problem 
and consider the second folding motions to occur in two 
components of simple shear parallel to c2, one differen- 
tial and containing all the waveforms, and the other 
constant over the entire area. Then one could talk in 
terms of the position off t  after the constant component 
but before the differential component.  In our example, 
it would simply be represented by the average main 
cluster of the observed hinge directions (Fig. 4). This 
orientation is designated f'~ on Fig. 13: and is actually 
fairly close tof~ as determined by Ramsay's intersection 
technique. 

The first axial plane must pass throughf~. If one other 
ray within the axial plane could be determined, then the 

Fig. I I .  ~h rec -d imcn , , i ona [  ca r loon  ol the ,,ccond genera t ion  tolds 
I~a~,cd ,m ~cct~on', ot Fig. I I )  
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Fig. 12. Sketch of level 8 showing the interpretation of axial planes of the first- and second-generations.  Synforms and 
antiforms are noted. The numbers and letters correspond to the first- and second-generation hinges shown in Figs. 7, 8. 

10, and 11. 

orientation of the plane and hence c~ is defined. This 
second ray can be obtained from the sections cut parallel 
to the second hinge plane (Fig. 7). These sections show 
traces of the first fold axial planes. These traces define a 
ray, denoted i~2, which is the intersection of the section 
and the first axial plane. Its orientation can easily be 
obtained since it by definition lies within the second 
hinge plane, and its rake can be readily measured. 
Notice that the direction of the i~: ray is not affected by 
the second folding because the ray lies within the shear 
(axial) planes of the second folds. Therefore it gives a 
measure of the original orientation of the first axial 
plane. Iff~ and i~2 are plotted on a stereonet (Fig. 13) the 
original orientation of the first axial plane is the plane 

z~ f~ • cz 

0 c~ • bz 

o i~2 • (~2 

Fig. 13 Stereonet summary of structural data for the analyzed 
sample. The first hinge plane is labelled 1ST HP. The first axial plane 
is designated 1ST AX. PL. The second axial plane is also the second 
hinge plane, and is labelled 2ND H P  Notice that the first hinge 

plane and second axial plane cross at a,. See text for details. 

containing these two points, cl will simply be the pole to 
the plane. Notice that the first axial plane and the first 
hinge plane are distinct in orientation but nearly parallel. 

The orientation of the analyzed sample was unknown. 
However, the structural elements determined from it 
provide intriguing information for the Kootenay Arc. 
The main clusters of the first and second fold hinges 
(Figs. 4 and 5) are close together (fl and f2 in Fig. 13), 
matching the nearly coaxial relationships observed in 
the field. The original orientation of'fl is not however 
coaxial with fl  and f2, but the second slip direction (a2) is 
within ten degrees off2. Apparently,  there was a signifi- 
cant amount of rotation of the first fold hinges towards 
a2, creating the nearly coaxial field relationships. Also, 
the observed second folds (f2) were created by motions 
(a2) almost parallel to themselves, and therefore almost 
parallel to the bedding planes being folded. The motions 
that created the folds had to be much larger than the 
folds themselves, and the tight second folds observed 
were probably caused by even tighter folding motions. 

Fig. 14. Stereonet of first hinge planes defined by individual first 
generation hinges. The original orientation off~ will be given by their 

intersection (Ramsay 1967). 
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DISCUSSION AND CONCLUSIONS 

The technique described herein is based upon several 
limiting assumptions. These are that the first folds are 
cylindrical and that the second folds can be described as 
having been formed by differential simple shear. These 
concepts are implicit in the "mechanics' of Fig. 3. If 
layering does not behave passively during the folding 
events, problems might arise, as suggested, for example, 
by concentric folds or folds exhibiting cleavage refrac- 
tion. Numerous workers (Ghosh & Ramberg 1968, 
Skjernaa 1975, Watkinson 1981) have shown that first 
fold hinges may add an element of anisotropy to the 
rock, strengthening it parallel to the hinges themselves. 
In a situation such as this, the second folds would not be 
similar folds. Figures 8 and 11 show that the analyzed 
sample is characterized by two generations of non-cylin- 
drical and non-similar folds. Yet this technique not only 
worked, but it actually displayed the non-ideal nature of 
the folds. This is probably due in large part to the tight to 
isoclinal nature of the first folds, such that the second 
folds were basically affecting nearly parallel bedding 
planes. 

A second problem would arise if a refold had been 
formed by more than two folding episodes. An attempt 
to use this technique should rapidly identify this prob- 
lem. A third problem is simply identifying which genera- 
tion each fold hinge belongs to, and figuring out con- 
tinuity of a single hinge from one level to the next. Yet 
another problem is one of hinge migration. O'Driscoll 
(1962) demonstrated this effect with card deck models. 
Interaction of two nearly parallel folds often will produce 
an apparent fold hinge part way between the two. This 
effect is also evident when a fold hinge interacts with an 
oblique surface or shrfaces. 

The technique described above fills a major gap in the 
analysis of refolded folds. A previously published 
technique (Carey 1962, Ragan 1973) enabled the 
unravelling of coaxial (type 3) refolds. Our technique 
works on non-coaxial (types 1 and 2) refolds, and so the 
two techniques are complementary. Coaxial refolds are 
more often recognized in the field because they are 
easier to interpret. Non-coaxial or even nearly coaxial 
refolds are more of a challenge. They are harder to 
interpret and may not even be recognized as refolds. As 
this new technique is used in future applications, 
structural geologists should become more familiar with 
refold geometries and be able to interpret them more 

readily. Analysis of samples from classic refold areas, 
such as Loch Monar in Scotland (Ramsay 1958, Watkin- 
son & Thiessen unpublished) would be useful. This 
technique is also ideal for refolded ore bodies, where 
mining levels give the necessary three-dimensional con- 
trol, and its use may also lead to predictions of the shape 
of the ore body in undeveloped areas. Thiessen & 
Brown (1985) use computer simulations to lead to a 
fuller understanding of the refolded rocks in the Galena- 
Roubaix district in South Dakota. However, the quality 
of such predictions directly depend on how closely the 
folds match the assumptions of cylindricity and similar- 
ity, and whether the fold shapes continue as determined 
into the unknown areas. 
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